Support Information

- 1, The following elements are diatomic; H_2 , O_2 , N_2 , F_2 , Cl_2 , Br_2 , I_2 , and At_2 .
- 2, Rules for naming compounds:
 - If there are two elements in a compound the non-metal will end in -ide. e.g. $CaCl_2$ - calcium chloride, K_2O - potassium oxide, Rb_3P - rubidium phosphide
 - If the compound contains a metal, non-metal and oxygen the non-metal will end in -ate.
 - If the metal has variable ions, the valency of the ion present must be shown in brackets e.g. Fe_2O_3 iron (III) oxide and FeO iron (II) oxide
- 3, Examples of acids (all are soluble):

Strong Acids

Hydrochloric acid (HCl)

Sulfuric acid (H₂SO₄)

Nitric acid (HNO₃)

Phosphoric acid (H₃PO₄)

Weak Acids

Ethanoic Acid (CH₃COOH)

Propanoic Acid (CH₃CH₂COOH)

Carbonic Acid (H₂CO₃)

4, Examples of soluble bases (alkalis):

Strong Bases

Sodium hydroxide (NaOH)

Potassium hydroxide (KOH)

Weak Bases

Ammonia (NH₃)

Potassium hydrogen carbonate

Note: Any base containing an alkali metal (Group 1) will be soluble.

5, Examples of types of insoluble bases:

Metal oxides e.g. copper oxide (CuO)

Metal carbonates e.g. calcium carbonate ($CaCO_3$)

Metal hydroxides e.g. magnesium hydroxide $(Mg(OH)_2)$

6, Examples of types of salts (formed when an acid reacts with a metal or a base)

Hydrochloric acid forms - chlorides

ethanoic acid forms - ethanoates

Sulfuric acid forms - sulfates

propanoic acid forms - propanoates

Nitric acid forms - nitrates

Phosphoric acid forms - phosphates

Exception: carbonic acid formed when carbon dioxide reacts with water - forms carbonates and hydrogen carbonates when reacting with a base

7, Salt solubilty rules in water

Note: All Group 1 salts and all nitrates are soluble in water

Soluble	Insoluble (form precipitate)
All common sodium, potassium and ammonium salts	
All nitrates	
Most common chlorides	Silver chloride, lead chloride
Most common sulfates	Lead sulfate, barium sulfate, calcium sulfate
Sodium carbonate, potassium carbonate, ammonium carbonate	Most common carbonates
Sodium hydroxide, potassium hydroxide, ammonium hydroxide	Most common hydroxides

7, Common General Reactions:

Reactions of Bases

• Acid + base → salt + water

a, Acid + metal hydroxide

Hydrochloric acid + magnesium hydroxide → magnesium chloride + water

b, Acid + metal oxide

Sulfuric acid + sodium oxide → sodium sulfate + water

Exceptions:

c, Acid + metal carbonate

Nitric acid + calcium carbonate → calcium nitrate + water + carbon dioxide

d, Acid + ammonia

Hydrochloric acid + ammonia \rightarrow ammonium chloride

Reactions of Metals

- Metal + Acid → metal salt + hydrogen gas
 Hydrochloric acid + magnesium → magnesium chloride + hydrogen gas
- Metal + oxygen → metal oxide
 Strontium + oxygen → strontium oxide
- Metal + sulfur → metal sulfide
 Iron + sulfur → iron sulfide
- Metal + water → metal hydroxide + hydrogen gas

 Casesium + water → caesium hydroxide + hydrogen gas

Combustion of fuels

- Complete combustion
 - Methane + oxygen → carbon dioxide + water
- Incomplete combustion
 - Methane + oxygen → carbon monoxide + water
 Or
 - Methane + oxygen → carbon + water

8, Types of organic homologous series:

- Hydrocarbons (made from hydrogen and carbon)
- Alkanes e.g. ethane (C_2H_6) , saturated, all single C-C bonds
- Alkenes e.g. propene (C_3H_6) , unsaturated, double C=C bond
- Alcohols e.g. butanol (C₄H₉OH)
- Carboxylic acids e.g. pentanoic acid (C5H9COOH)
- Esters e.g. methylhexanoic acid ($C_6H_{11}COOCH_3$)
- Addition polymers e.g. poly(ethene)
- Condensation polymers e.g. polyesters and polyamides