
HGS Curriculum Map Key Stage 4

Year Group: 10 Computer Science GCSE - Summer

Time period Summer 1

Summer 2

Topics/
sub-topics

Programming Techniques

Practical Programming Task

Purpose

The unit covers Section 2.2 of the OCR GCSE (9-1) Computer Science
specification. The first two lessons focus on data types and arithmetic
operations. Followed by an introduction to sequence, selection and
iteration. Subsequent lessons discuss arrays, procedures and functions.
The final lesson is on records and reading from and writing to a text file.

In this unit students are given the opportunity to undertake an extended
programming task. The specification for the programming task will allow
them to develop skills within the following areas when programming:

• Design

• Write

• Test

• Refine

Crucial Learning At the end of this Unit all students should be able to:

• identify and use variable types integer, real, Boolean, character
and string

• identify variables and constants in a program

• use meaningful identifier names and know why it is important to
use them

• use arithmetic operations including mod and div

• use Boolean operators in pseudocode solutions

• show the results of basic string manipulation functions

• use random number generation

• follow through pseudocode solutions to simple problems
involving sequence, selection and iteration

• explain why functions and procedures are used in creating
solutions to problems

• use simple functions and procedures that return values to the
calling program

Most students will be able to:

• write pseudocode solutions to simple problems involving
sequence, selection and iteration

• use nested selection and iteration statements

• use Boolean operations NOT, AND and OR within conditions for
iterative and selection structures

• use basic string manipulation functions in pseudocode solutions

• give examples of data structures: arrays and records

• use one-dimensional arrays in the design of solutions to simple
problems

 Students will be able to:

• Explain the programming concepts of sequence, selection and

iteration

• Understand basic Python syntax and interpret error messages

Most students will be able to:

• Decompose programming problems into smaller parts and then

design and apply algorithms to data.

• list structures and their various uses.

Some students will be able to:

• To read to and write from text files, and how to structure data so

that programs can interpret it correctly.

• write simple functions and procedures using parameters

• read from and write to a text file

Some students will be able to:

• explain what is meant by a data structure and why these are
used

• use two-dimensional arrays in the design of solutions to simple
problems

• explain why it is good practice to use local variables

Sequence Prior Knowledge

• In Y7 students learn to program in a visual language e.g.
Scratch. In Y9 students complete two programming modules
‘Mobile App Development’ and an introductory course on ‘Python
Programming’

Prior Knowledge

• In all three of the programming units at KS3, students are
required to solve basic programming tasks. They have limited
experience of program design or terminal testing.

Future Learning:
A-Level Computer Science (AQA):

- 4.1 Fundamentals of Programming
- 4.2 Fundamentals of Data Structures

Future Learning:
A-Level Computer Science (AQA):

- 4.13 Systematic Approach to Problem Solving
- NEA Computing Practical Project

Skills Acquired

Computational Thinking Skills:

• Decomposition - breaking down complex problem or system into
smaller, more manageable parts

• Pattern recognition - looking for similarities among and within
problems

• Abstraction - focusing on the important information only, ignoring
irrelevant detail

• Algorithms - developing a step-by-step solution to the problem, or
the rules to follow to solve the problem

Computational Thinking Skills:

• Decomposition - breaking down complex problem or system into

smaller, more manageable parts

• Pattern recognition - looking for similarities among and within

problems

• Abstraction - focusing on the important information only, ignoring

irrelevant detail

• Algorithms - developing a step-by-step solution to the problem, or

the rules to follow to solve the problem

Assessment:

Formative &
summative

Assessment

Verbal Feedback: Regular use of peer, self and teacher feedback

Written Feedback: Individual feedback of home learning assessments in
the Showbie ‘Marking and Feedback’ folder. Students have dedicated
improvement and reflection time at the start of each lesson.

Programming Feedback: The students use an on-line integrated
development environment (IDE) called Trinket.io. The software uses
versioning to allow students to submit their programming solutions. The
teacher has access to a dashboard, that allows them to view, execute
and feedback on individual students work.

Learning Grids:

- 2.2 Programming techniques

SIMS:

- SPR 1 OGCU

Assessment

Verbal Feedback: Regular use of peer, self and teacher feedback

Written Feedback: Individual feedback of home learning assessments in
the Showbie ‘Marking and Feedback’ folder. Students have dedicated
improvement and reflection time at the start of each lesson.

Programming Feedback: The students use an on-line integrated
development environment (IDE) called Trinket.io. The software uses
versioning to allow students to submit their programming solutions. The
teacher has access to a dashboard, that allows them to view, execute
and feedback on individual students work.

Programming Project:

- Project task sheet provided by OCR

SIMS:

- SPR 2 OGCU

